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Abstract

The surface ship path control problem is formulated as a multivariable,

linear state variable control problem subjected to measurement noise and non-

zero mean disturbances. A multivariable generalization of integral control is

presented and then specialized to the surface ship path control problem. The

controller has the property of providing zero steady-state error to a constant

commanded set point. Xt is insensitive to errors in the knowledge of the sys-

tem characteristics. The controller has a nonzero steady-state error to a

ramp commanded set point  nonzero heading straight path!. This error is estab-

lished analytically which allows its calculation in advance. The effect of the

error can, therefore, be eliminated by simply shifting the time at which turns

are initiated. The performance of the controller in straight steaming, lane

changing maneuvers, passing maneuvers, and a series of turns and straight path

segments is illustrated by digital simulations. The multivariable integral

controller shows promise as an effective and practical surface ship path can-
trol concept.
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1. Introduction

The problem of controlling surface ships along prescribed paths in re-

stricted waters is important from operational, safety, and environmental view-

points. In the Great Lakes system, the difficulty associated with the safe

movement of large bulk carriers through restricted waters such as the St. Marys

River below the Soo Locks is a controlling factor in the evolution of larger,

moxe economical vessels. The use of ships larger than the present 305 m �000

ft! vessels may well be limited by a lack of maneuvering safety and/or exces-

sive dxedging costs. Since these larger bulk carriers would be a mall, dedi-

cated fleet, it might be practical for them to use onboard, Tnicrocomputer based

automatic path controllers in the most restricted channels such as the St.

Marys River. Precise, reliable, automated control might exceed the expected

day-to-day performance of human operators and thus permit the use of larger>

more economical vessels in more restricted channels with resulting reduced

dredging costs and/ox' increased safety. These reduced system costs could more

than offset the automatic control system costs.

In this report, we investigate the feasibility and effectiveness of using

a multivariable integral control law for the path control of a surface ship in

restricted ~aters. This type of control would be a potential candidate for use

onboard Great Lakes bulk carriers. These ships are subjected to short-term,

essentially zero-mean disturbances due to passing ships, current and wind

variations, waves, and bank and bottom changes. They are also subject to more

long term, non zero mean disturbances due to current, wind, second-order wave

forces, and banks. The dynamic characteristics of the ships also change signi-

ficantly depending on depth-under-keel, draft, txim, and speed. Maneuvering

situations can place severe demands on the helmsmen and occur often in the

Great Lakes system due to the high percentage of the voyage time spent in re-

stricted watex's-

In previous work, we have investigated the feasibility and effectiveness

of other control schemes for the path control of surface ships in restricted

waters.  hr earliest work~ investigated the use of nonadaptive, optimal

stochastic controllers for this purpose. These control systems consisted of a

steady-state Kalman filter and a steady-state optimal state feedback control-

ler. The Kalman filter uses noisy measurements to generate an unbiased

estimate of the state which is then used by the contx'oiler to generate the



rudder command. In that work, the yawing moment and lateral force disturbances

acting on the ship were modeled using first-order shaping filters. These con-

trollers were shown ta provide effective contral when a ship is subjected ta

short-term, essentially zeromean disturbances. That work did nat produce con-

trollers which could accommodate more lang-term disturbances without a mean

offset from the desired path. We also showed the desirability of an adaptive

system which could automatically accaunt for changes in the dynamic character-

istics af the ship due to changes in depth-under-keel or other operating condi-

tiahsi

Our mare recent work r investigated surface ship path controllers which

can accommodate lang-term disturbances with a zero-mean offset fx'om the path

and which can adapt far changes in the dynamic characteristics of the ship.

These control systems consisted of faur ma!ar components arranged into two

loops. The inner or contxol loop consisted of a steady-state Caiman filter and

a steady-state optimal state feedback controller as used previously except

that we modeled the yawing moment and lateral force disturbances using a

brownian motion approach. The brownian motion approach assumes that the rate

of change of the unknown disturbances is white noise of known spectral density.

Standard optimal stochastic control techniques are then used to design a Kalman

state estimator and state feedback controller. With the use of the brownian

motion disturbance models, the Kalman filter can effectively estimate both the

essentially constant and the stochastic disturbances which are acting an the

ship at any time. The controller using the brownian motion disturbance model

was shown to be very effective provided the ship hydrodynamic characteristics

were well known.

Since the dynamic characteristics of a ship will generally not be well

known in restricted ~stere, our mare recent work < added a second, outer or

gain update loop consisting of an on-line parameter estimator and a second

function which recalculates the Kalman filter and controller gains using the

latest estimates of the ship characteristics. A. minimum variance parameter

estimation scheme was utillsedi This approach has shown some promise but has

also shown the design concept to include seriously conflicting requirements.

Por the parameter estimator to be fully effective it is necessary to cause the

ship to move dynamically about its desired path so that its rudder command and

resulting motion histox'ies can be used to estimate the hydrodynamic character-



istics. This motion is, however, in direct conflict with the objective of pre-

cise path control. Compromise is therefore needed between the accuracy of the

parameter estimates and the effectiveness of keeping the vessel on the desired

track.

A preferred approach for surface ship path control in restricted waters

would be a scheme which would be effective with known ship characteristics but

also "robust" or insensitive to changes in the ship characteristics from those

upon which the design was based. The multivariable integral control approach

studied here has these desired characteristics. Holley and Bryson" recently

completed a survey and evaluation of multivariable control techniques applic-

able to the automatic loading approach control of aircraft. This work has

served as the starting point for our current work. Holley and Bryson concluded

that a multivariable generalization of integral control provided effective con-

trol which allowed the zeroing of steady offsets due to essentially constant

disturbances. Further, the resulting systems were insensitive to model  dy-

namic characteristics! errors as are present in the ship path control problem

due to water depth, bank and speed changes if a nonadaptive controller is to be

used. This approach does sacrifice some performance compared with the optimal

stochastic controller using brownian motion disturbance models when the ship

hydrodynamic characteristics are correctly known.

This report is presented in four principal parts. First., the surface ship

path control problem is formulated as a linear multivariable control problem.

The selection of measurements and the definition of design process distur-

bances, which are used in the evaluation of system performance, are discussed.

Second, the derivation of the multivariable integral controller is presented in

general and then more specifically for the ship path control problem. The

steady-state error for this controller to a ramp commanded set point is estima-

ted using a deterministic approximation. Third, a multivariable integral path

controller is designed for a specific ship and its performance is evaluated us-

ing digital simulation. Finally, a revised approach using coordinate system

rotations is introduced and its performance is evaluated using digital simula-

tion. The report closes with conclusions based upon this work.



2. Problem Formulation

In this section, we formulate the surface ship path control problem as a

linear, state-variable control problem. The selection of measurements and

typical process disturbances are also discussed.

2.1 I ations of Notion.

The development of the linearized, state-variable equations of motion for

a surface ship moving in the horizontal plane presented here is based on the

formulation by Fu!ino and is presented in more detail in our earler work.

The coordinate system for the problem is shown in Fig. 1. The 0 - Kn system

is fixed in space with the desired ship path predominantly along the F,-axis so

that the prescribed lateral offset qd could be programmed as a function of

This approach is typical of many maneuvering situations where the ship is

to follow a series of straight paths or leading line segments along a general

direction. A more general approach without restriction on the prescribed path

will be utilized in Section 5 ~ The G-xy system is fixed at the center of

gravity of the ship. The positive sense of the drift angle 8 , heading angle

yaw rate r , and rudder angle 6 are shown. Neglecting the effects of

pitch and roll, the ship motion can be described by coordinates x, y, and

desired x,X,u u = dx/dt
v = dy/dt

 �2�2! ! /Z
r = dQ/dt

  Y v

Figure 1. Coordinate System for Path Control

The exact equations of motion of the ship are integro-differential equa-

tions in which convolution integrals represent the memory effect of the fluid

to previous motion.6 An alternative formulation yields differential equations



dv m+m ! � ~ Y v +  -mU+Y !r + Y'r + Y66 + Ydt r I

dr I +J ! � N v + N r + N v + N66 + Nzz zz dt v r v �!

� - U<4-6!
dn

dt �!

which are valid for small deviations from the nominal path, g 0 , and a con-

stant speed U condition. An external sway force Y and an external yawing

moment N are included to account for disturbances which act on the ship. It

is common and convenient to utilize drift angle g instead of the lateral velo-

city v so we can use,

v = -Using = -UB �!

to express eq. �! and �! in terms of the drift angle. These equations can
then be nondimensionalized as shown in the Nomenclature to yield,

dt' �!

d ! I- m'+my'!~ ~ Ygl  !'my +  -m'+Yri!r' + Y. r + Y6I6' + Y'
rs �!

dr I
 I +J ! N I ! N Ir + N f3 + N6I 6 + 'N gzz zz dt' r g 1 �!

dq'
m

dt'  8!

d6'

dt' T c
r

where we have now included a first-order model for the steering gear dynamics.
The control is the comanded rudder angle 6c' . The unit of nondimensional
time t' ie the time it takes the ship to travel one ship length.

with frequency dependent coefficients. Fugino has shown that for the maneuvers

of interest here the frequency dependence is negligible and constant-coefficient

differential equations can be utilized. This assumption becomes less and less

valid as the water depth to ship draft ratio H/T + 1 . When the equations of

motion are linearized about the nominal path, the equation in the x-coordinate

decouples so that the ship motion can be given by,



Equations �! through  9! can be transformed into state-variable forms

i.e.,

0 1 0 0 0

22 23 25

0 0

>21 >22

Y31 Y32

0 0

0 0

�0!
yl

d
dt' c

0 f32 f330 f

1 0 -1 0 0

S'0 0 0 0 -1/T

or,

nx1 mx1 qx 1

x =Fx+Gu + I' w

The coefficients of the open loop dynamics matrix fij and the disturbance
distribution matrix yij are algebraic combinations of the stability deriva-
tives and mass and inertia terms in eq. �! and �!. The multivariable in-

tegral controller of interest here can handle disturbances with a nonzero mean-

We will therefore model these disturbances as the sum of two components; i.e.,

an unknown but constant part ~w and an additive white noise disturbance w'.

Equation   11! then becomes,

x = Fx + Gu + I'w + I'w' �2!

The problem thus has five states, one control, and four disturbance components-

For a particular example, we will utilize the data obtained by Fujino

for a model of the 290m  951 ft! tanker Tokyo Haru ~ This is obviously not a

Great Lakes vessel but is utilized here due to the availability of data and to

allow a direct comparison of the performance of the multivariable integral con-

troller with that of the other approaches we have considered previously.

Systemmatic data for Great Lakes bulk carriers is only now becoming available

through a Maritime Administration sponsored project at Stevens Institute and

ARcTEc. Fujino conducted planar motion mechanism  PMM! and oblique tow tests of

the model at various water depth-to-draft ratios H/T. Selected characteristics

unstable for the intermediate depth-to-draft ratios from about 3.0 down to 1.75

for thie veSSel are shown in Table 1. The coefficients fij and yij obtained
for the Tokyo Naru at 12 knots full-scale at 8/T values of 1.30, 1.50, 1.89,

2.50, and ~ are given in Table 2. AS Shown by Fujino thiS veSSel ie course



as is typical oi many large vessels.

Table 1. Characteristics of 1"okgo Maru Noel and Prototype.

1 ~ 30 2 ~ 501 ~ 50 1. 89

f25

>22

f32

f35

14 ' 230

-23 ~ 123

21. 141

-28 ' 233

11 ' 82S

-19 ' 216

21,942

-31 ~ 490

16. 844

-37. 384'Y32

Table 2. Coefficients of tokyo Haru versus H/T at F�=O. 116
  12 knots full-scale!

The output of the system, eq.   12!, will be given by,

�3!Tx g

where T is the output selection matrix. We will take the lateral offset as

-1 ~ 6508

9. 3157

-0 ' 55543

346 ' 69

4 ' 8040

0 02974

-1 ' 0388

-0.09995

-1 ~ 7136

6.6235

-0.79235

385 ' 98

-2 ~ 2145

0 ' 13890

-0 ' 71895

-0 ~ 12092

-1 ~ 7657

5.7359

-0 ' 88074

477.68

-5 ' 0043

0 ~ 17 199

-0.52766

-0. 15607

-1.8177

4 ~ 6112

-1 ~ 0416

536.00

-5 ' 8625

0 ~ 23621

-0 ' 54560

-0 ~ 16639

-1 ~ 9515

3 ~ 1591

-1 ~ 0410

567 ~ 13

2.3365

0 ~ 31507

-0.63651

-0 ~ 16163



the output here so g is just a scalar and T becomes the row vectox',

T = [0, 0, 0, 1, 0] �4!

2.2 Measurement Selection.

The authors have previously studied the observability of the ship path

control problem. It was shown that it is necessary to measure the lateral

offset rt' . Additional measurements improve the ability of a Kalman filter

to estimate all the states and thus improve the effectiveness of an optimal

state feedback controller. The yaw rate r' is the next most effective mea-

surement. The heading Q' is readily available and is the next most effective

measurement. The drift angle 9' measurement was shown to add little to the

effectiveness of a ship path controller which already measures rl' , r' , and

With the steering gear model used in Section 2. 1, there is little need

to measure the rudder angle since the state is known exactly given any initial

condition 6' to! and the subsequent rudder command history 6' t! , t W to
c

In any practical application, the steering gear would have its own, separate

feedback system; the first-oxder model included in eq. �2! is just a means of

introducing a realistic rudder time response into our study. For the purposes

of the controller design, it is reasonable to assume a measurement vector con-

sisting of measurements of rP' , r', and n' each contaminated by Gaussiang

white noise; i.e.,

px 1 1 0 0 0 0

01000

0 0 0 1 0

�5!Hx+ V ~x+ V2

V3

All of the states in the ship path control problem as formulated in

eq. �2! are available for measurement. The heading Q' can be obtained from

a compass' the yaw rate r' can be obtained from a rate gyroy the drift angle

8' = -v' can be obtained from a doppler sonar' the rudder angle 6' can be

obtained from the rudder stock or less accurately from the steering geax rams.

The lateral offset from the desix'ed path rl' must be obtained using navigation

aidS SuCh aS DECCA Hi-FiX Or radar. Each Of theee meaeurementS may be SubjeCt

to bias and zero-mean measurement errors and system transmission noise ~ Xn the

presence of this measurement "noise" and with the measurement of only selected

states, the complete state vector can be estimated using a Kalman filter

provided all of the states are observable with the chosen measurements.



The final part of measurement definition is to establish reasonable levels

for the measurement noise u . The white noise power spectral density needed

in our continuous system design approach can be estimated by assuming the noise

to be exponentially correlated with an RMS noise level a> and a correlation
time r~ . The v~ should be much faster than the time constants of the ship

and less than the system sampling time for the white noise model to be valid.

The power spectral density can then be estimated by,

�6!

To evaluate the control system effectiveness in this study, we use digital sim-

ulation with a fixed-stepsize Euler integration scheme. This has the effect of

approximating the continuous Gauss-Markov process, eq.   12!, eq. �4! and eq.

�S!, by a discrete Gauss-Narkov process. In these simulations, the covariance

of the computer generated random measurement noise must be selected to be con-

sistent with the design noise power spectral density. To provide equivalent

state estimate error covariances, it is necessary that the simulation measure-

ment noise variance given by,

r
2

ht

where ht is the integration stepsize. > This can also be considered from

a more direct viewpoint. If the controller is implemented digitally in an on-

board computer with the system sampled at each b,t , the measurement noise will

be a white sequence with variance a~'

The reference measurement noise levels used in this work are shown in

Table 3 ~ In view of our earlier comments about the rudder model included in

eq. �2!, we assume exact knowledge of the rudder angle Astrom and Kallstrom

note that all sensors have dynamics with time constants less than 1 sec. and

that the measurement errors are about 0. 1 in Q , 0 02 /s in r . Killers

uses RNS errors of 0 ' 2 in Q , 0~01 /s in r and 10 m. in q . Canner

states that BECCA Hi-Fix crosstrack errors are as low as 1 m. when the baseline

is along the desired path as is done at the entrance to Europoort. Astrom and

Kallstrom and Bystrom and Kallstrom have found errors in r of less than

0.002 /s in systems identification of full-scale experiments. In view of this

data, the reference levels assumed in Table 3 seem reasonable. The values for

r~~ and a~' are nondimensional. The a~' are calculated by eq. �7!
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assuming At' = 0.005  dt = .24 s! which we use in our simulations. A noise

correlation time of 0.1 s. and a sampling of .24 s. imply some correlation but

the resulting values for a~' yield reasonable covariances for a white measure-
ment noise sequence. Dimensionally, the a1' are about 93 percent of the
assumed values for a~

Table 3. Reference Measurement Noise Characteristics

2 ' 3 Desi Process Disturbances-

While operating in restricted waters, a ship can be sub]ected to a wide

range of disturbances. Many of these can be characterized as being short-term

relative to the time constants of the ship and as having essentially a zero

mean value. First-order wave forces, wind gusts, and passi~g ships can be in-

cluded in this category. Other disturbances remain long enough relative to

the time constants of the ship that they must be considered to have nonzero

mean value. Second-order wave forces and the effect of a lateral current,

bank, or steady wind are included in this category. For the purposes of this

study, we utilize two typical or design process disturbances in digital simu-

lations to evaluate the performance of the path controller. These design dis-

turbances were defined in our previous work. These definitions are repeated

here for completeness.

passing ship were selected as a typical short-term, essentially zero-mean dis-

turbance. The assumed design disturbance is shown in Fig. 2. This disturbance

is based on results originally presented by Newtonl7 for two Hariner vessels

passing in deep wateri These results are considered to be representative

forces and moment histories and thus are reasonable for use in comparisons

here. Yung and Abkowitz, Ashe, and Fortson show that the magnitude of the

diSturbanCeS inCreaee in ShallOW Water aS H/T + 1 So'the magnitudeS in Fig. 2

are known to be low at the shallower depths. In Fig. 2, the nondimensional
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time scale is in ship lengths and the ships are beam-to-beam at t' 0

These lateral force and yawing moment histories are assumed to be independent

of depth under keel in our simulations.

N'xlO Y'xlO

Figure 2. Design Passing Ship Disturbance.

lateral Currents The effect of a lateral current was selected as a

d8e'
- m' + m�'! ~ YAH ' +  -m' + Y s!r' + Y.,r' + Y6 ~ 6'

J dtt �8!

typical long-terra, nonzero-mean disturbance for use in our ship path controller

simulations. In a steady current, the ship assumes an equilibrium condition

with 6' 0 and Q" �' so that the effective drift angle relative to the

water  !e' is zero. In this condition, there is no external hydrodynamic

lateral force or yawing moment on the ship. In our ship maneuvering equations,

we have assumed to this point that the drift angle B' is with respect to the

earth. In. shallow water, a doppler sonar would actually measure lateral velo-

city relative to the bottom. In a lateral current vc' without an additional
disturbance, eq. �!, �!, and  8! should properly be written,
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dr'
 l' + J' ! � - Noig ' + N ir' + N g ' + N�5'

zz zz dt e   19!

- Se + vc �0!

Now if the drift angle relative to the earth 5' is introduced,

g I ~ g l y v ~ �1!

eg.   18!, �9!, and �0! become as follows in a steady current:

- m' + m '! = Yglg' +  -m' + Y i!r' + Y.,r' + Ygi6' + Y Iv ' , �2!dg ~

y dt � S r' c

dr I
 I' + J' !, Ngef!' + Nr r' + N. g' t Ngi5' t I ! vc

zz zz dt'
�3!

dq ~
g I

dt' �4!

Thus when using the drift angle with respect to the earth in eq. �2!, a steady

current has the effect of applying an external lateral force and yawing moment

given by,

~ v ~ I �S!

and,

�6!N' = Ng 'vc'

For design evaluation purposes, we have used eq. �S! and �6! to esta-

blish the lateral force and yawing moment produced by a 1 knot lateral current

on the Toyko Pfaru moving at 12 knots in an intermediate water depth H/T ~ 1.89.

This disturbance was assumed to be constant for 15 ship lengths and then to

reduce linearly to one half this value at 20 ship lengths. This design dis-

turbance is shown in Fig. 3. These lateral force and yawing moment histories

are assumed to be independent of depth under keel in our simulations.
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Figure 3. Design Lateral Current Disturbance



3. Derivation of Inte al Controll.er

Zn this section, we derive the multivariable integral control.ler which is

a nonzero initial command without a startup transient. The general develop-

ment is followed by a specialization to the ship path control problem. The

section closes with an estimation of the steady-state error of the controller

to a ramp commanded set point.

3.1 General Derivation.

The multivariable integral control law can be taken ae a state variable

feedback plus a feedback on a fictitious output ~ g i.e.,

u C~x + Cy ~ ~ �7!

At this point, ~ can be defined as the difference between the desired

steady-state output Xd and Xw, the output due to the constant disturbance

~W

�8!Xo Xd Yw

Substituting this expression into eq. �7!, we arrive at an alternative expres-

sion for the control lawy

u Cxx + Cy  Zd - Yw!

Note that when the constant disturbance component ~w is zero, its correspon-

ding output gw should also be zero, y becomes identical to gd and the

control becomes,

u ~w 0! C x + Cy~ �0!

This provides a heuristic !ustiiication for the presence of the second term in

the control law.

The steady-state condition of the system in the presence of the constant

portion of the disturbance ~w can be used to derive an expression for the

feedback gain matrix C . In the steady-state, we have x 0 . We can

designate the steady-state values of the state and control by the subscript s

and the perturbations from these values by a prime> i.e.g

-14-

evaluated in subsequent sections. The general development follows that given

by Holley and Bryson4 except that it is more general in that it can accommodate
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xx+x 

U~~U+Q ~
�1!

Substituting eq. �1! into eq. �2!, we obtain the following system:

x" Fx' + Gu' + I'w'

�2!
0 Fxs + G~u + I'~w

The steady-state solutions, if any exist, must then satisfy,

�3! F + GCx!xs + GCy Zo + I~w 0

If the system  F,G! is controllable,  F + GCx! is negative definite so,

xs = " F GCx!  GCy go + res!-I
�4!

and the steady-state output is,

~ = Txs -T F + GCx!   Cy go + I'~w ! �5!

Defining,

L = -T F + GC !-'   36!

this becomes,

  37!LGCy ~ + LI'w

If we now require that the steady-state output X be equal to the desired

output ~ , comparison of eq. �7! and eq. �8! yields,

�8!LI ~w

and

�9!LGCy = I

where I is the identity matrix. Equations �6! and �9! allow the calculation

of the gain matrix Cy from F   G   Cx   and T ~

Estimating ~ . In practice w~ the nonzero bias component of the dis-

turbance is rarely known. Therefore both the state x and gw are unknowns

in the control law, eq. �9!. A recursive scheme can be utilized to provide

an on-line estimate of gw . Here we will present an argument which will show

heuristically how one can arrive at a particular form for this estimation
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scheme. Starting with a linear estimate approach:

�0!Yw = Ky gw gw! KyL�'~w I'>s!

is an estimate of ~w and gw is an estimate of gw . Fromwhere ~w

eq.   12!, I'~w is approximately equal ta,

I'w x - Fx � Gu

or using eq. �'7!>

I'w~ � x �  F + GC !x - GCy g �1!

Substituting eq. �1! into eq. �0! yields,

KyLx + KyL[ F + GCx!x + GCy po + Iw~]

or using the definition of L, eq. �6>, and eq. �9!,

KyLx - Ky T - - LI' ! ~ �2!

Recalling from eq. �7! that,

~ ~ yo + LI'~w

we can replace ~w by ws in eq. �2! and it can then be rewritten as,

gw = � KyLx � Ky Tx - gd! �3!

We can now define a new state variable v by the differential equation,

v ~ Tx �4!

gw = � K  Lx + v! �5!

Equation �5! can be integrated to give,

- Ky Lx + y! + gc �6!

This new state is thus the integral of the output error. Substituting eq. �4>

into eq. �3!, we obtain the following linear estimation scheme for
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where ~ is the constant of integration which can be obtained from the ini-

tial conditions of the system.

with the other closed-loop eigenvalues, this estimator will provide a rapid
A

estimate with gw + gw . Substituting eq. �6! for ~ in the control law,
eq. �9!, yields,

�7!u ~ Cxx + CY gd + Cv Lx + v! � Cy gc

where,

�8!Cv = CyK ~

This final control law is comparable with that obtained by Holley and aryson

except that they omitted the final term. This additional term resulted from

the constant of integration in the integration of eq. �5!. It is necessary

to allow the startup of the system with a nonzero desired output without an

undesirable startup transient. This will be illustrated by simulation results
presented in Section 4.

Augmenter? System. In equations   I2!,  T3!, and �4!, the system states

x and the integral error states v are only available through the noisy mea-

surements of the states, eq.   15!. The system is also subjected to the process

disturbances ~w and w' ~ In this situation, we can utilize the Separation

Theorem and estimate the states of the augmented system by the system of
Kalman filters,

*
Fx + Gu t Kx z � Hx

�9 !A
Tx - gd + Kv  z � Hx!

and then utilize these estimates in the control law,

A

u = C~x + Cygd + Cv Lx + y! - Cynic �0!

From eq. �0! it can be seen that the eigenvalues of K will determine the

dynamics of the estimate af gw independent of x . These will also be eigen-

values of the closed-loop system. The other eigenvalues will be those of the

closed-loop controller  F + GCx! and those of the state estimator  F � K H!

In eq. �0!, it can be seen that if the gain matrix K is selected to

be negative definite with eigenvalues to the left in the complex plane compared
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The remaining Kalman filter gains K can be determined to produce a zero mean

output error Tx � gd even when the system is subjected to measurement noise

and process disturbances. Holley and Bryson show that this condition will

result if,

 T - K H! F K H!J' 0 �1!

This can be used to obtain K

Summary. The complete multivariable integral controller is defined by

equations �9! and �0! ~ The control gain Cx and state estimator gain K

can be obtained using optimal control methods such as eigenvalue decomposi-

tion ! ! as used in our previous work. The gain matrix can be ob tained

Cy is defined by eq! �9! with matrix L fromby pole placement. The matrix

eq. �6	 i.e., the solution to,

-T P+GCx! ~GCy = I ~ �2!

The matrix C can then be obtained from eq. �8!. The matrix K can be

obtained from eq. �1!. This control concept will produce a zero steady-state

output error with respect to a nonzero desired output when subjected to a con-

stant disturbance. This result is independent of errors in the knowledge of

the system matrices F , G , and F as will be present in the ship path con-

trol problem. The system can accommodate zero mean measurement noise and pro-

cess disturbances. A schematic block diagram of the complete system is shown

in Fige 4 ~

3 ' 2 A lication to Shi Path Control

x Fx + Gu + 1'~w + I'w'

�3!z Hx+ v

Tx !

where,

The general form of the multivariable integral controller has been derived

above. This can now be specialized to the surface ship path control problem

as represented by equations   10!,   14!, and   15!. We have the following system

from above:



-19-

disturbances
w + w

tput

state estxmators

Figure 4. Schematic of Multivariable Integral Controller
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andi
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Output Integral Frror Fstimator Cain K . In this problem, the output

ri, the desired output ~ nd, and therefore the output integral error

v are all scalar quantities. With three measurements, the gain K is then

a vector of dimension three which drives the estimator,

�4!v » Tx yd + K  z + Hx! ~

This gain vector can be obtained from a system of two equations produced by,

�5! T - X H! F � K�~!r 0

The solution to this equation is a one-dimensional subspace because we have

three measuremente of a system which is subject to two unknown disturbances.

The state estimator gain K is in general a full matrix and we can designate

its elements as kij . We have shown previously ~ that for the system model
used here the rudder angle is known exactly from knowledge of its initial value

and the commanded rudder history. The last row of the state estimator gain

matrix X is, therefore, zero for the statistical steady-state filter> i.e.,

k51 k52 » k53 » Oa

We can define the matrix,

5x2

= {mij]  F - X�H!I' �6!
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which has the elements,

m12 � - k12!Y22m11   12! Y21

m21  f22 k22!Y21 + f23Y31 i m22  f22 k22!Y22 + f23Y32

m31   32 32! Y21 + 33Y31 i m32   32 32! Y22 + f 33Y32

41 k42Y22 Y32m41 k42Y21 Y31

m51 = k52Y21 m52 -k52Y22

If we now let the gain matrix K [k1, k2, k3] , eq. �5! becomes>

[-k1, -k2g Og 1 k3, 0]N ~ 0

which yields the following system of equations:

-k1m11 k2m21 + � - k3!m41 0

�7!
-k1m12 - k2m22 + � - k3!m42 0

The resulting one-dimensional solution is,

m4im22-m42m21
k1 � - k3!

m1 1m22"1 2m 2 1

�8!
m1 1m42 m12m41

k2 � - k3!
m11 22"12m21

minimize the ITAK  integral of time multiplied by the absolute value of the

error! or a similar transient response performance index.

k3= 1In this report, we will consider the simple special case where

so that eq- �8! yields,

k1 k2 0

and,

�9!K = [0, 0, 1] e

where k3 is free to be selected by the designer. This indicates that an op-

timization process could be utilized to determine the value of k3 which would
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In this case, integral error state v has the definition,

v ~ ll

from eq. �4! and the estimator for this state, eq. �9!, becomes simply

�0!v ~ z3 Qd ~

Thus v is the integral of difference or error between measured lateral off-

set and the desired lateral offset. Wa therefore have a proportional plus in-

tegral control as desired.

Feedback gains Cy amf Cv . These two gains are used in the feedback

control law, eq. �0! ~ The gain C which multiplies the desired output yd

is a scalar. From eq. �0!, the gain Cv will also be a sca1ar since u and

v are scalars. Using eq. �9!, we have,

Cy �1!

where L and G are each �x5! vectors. The state feedback gain matrix C

can be obtained using an optimal control technique such as eigenvalue decompo-

sition which yields the statistical steady-state controller given F , G , a

design cost function, and assumptions for the spectral densities of the measure"

ment noise and process disturbances. This gain matrix can be represented here

C
-� 0 0 1 0! F+GC�!-' 0

0 0 0
1/T

Me therefore need only the �,5! element of the matrix  F + GCx! which can

be shown to equal Tr/C4 . The gain C then becomes,

�2!C ~ -C4

and eq. �8! yields,

�3!C4xy ~

as Cx fC1, C2, C3, C4, C5] . Using equations �6! and �3!, the gain C� is
given by,
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Integration Constant yc . The scalar yc appeared as the constant of

integration in the integration of eq. �5!. Substituting yd = qd , eq. �2!,

and eq. �3! into the control law, eq. �0!, we have,

A
u ~ C~x � C4qd - C4K  Lx + v! + C4yc   64!

~ 4 A h h r92 h
Using, x = [f, rg gg Qg 5] g

[f!g X2g k3g f4' 45]and,

this becomes,

I4A

u  C~ - C4Kyk~!g +  C2 - C4Ky42!r +  C3 � C4Kyf,3!I!
~ 92 A A

+  C5 C4Kyi5! 6 + C4� - lid! - C4Kyi4Tl + C4yc - C4K v ~ �5!

This equation permits a solution for yc given any set of initial conditions
*

on the states x�! x�! and the control u�! ~ For the typical case

where the ship is to begin on a straight course with an initial offset no

from the g-axis, we have,

andy

x�! = x�! = [0, 0, 0, qo, 0] T

v�! = v�! 0

Without a disturbance the commanded rudder angle control will also be zero,

i.e.,

u<0! = Sc�! = 0

Substituting these initial conditions into eq. �5! yields,

Yc yf4 la �6!

so that the subsequent control law becomes,

u = C~x - C4qd - C4Ky Lx + v! + C4K k4qo �T!

From eq. �6! and eq. �3!, R4

�,4! element of the matrix  F

can be seen to be !ust the negative of the

+ GCx! which can be shown to yield,
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C!

C4

so that eq. �7! becomes,

A * A

u C~x � C4vd - C4K� roc + v! + C~z�eo �8!

C!<o
V

C4
�9!

We will show below that this startup transient can be quite large. Including

the Last term in eq. �8! avoids this undesirable startup transient. This

completes the development of the multivariable integral path controller for a

surface ship. In Section 4, this controller will be designed for the Tokyo

Maru and its performance will be evaluated using digital simulation.

3.3 Stead State Error to a Ram Commanded Set Point

In most practical situations, the prescribed ship path rid is defined by

a series of straight lines or leading line segments. In general, most of these

will not be parallel to the  -axis and thus the commanded set point yd nd

will be a ramp function and not a constant. The controller developed above

will produce a zero mean error for a constant commanded set point but its per-

formance will deteriorate when yd is time»dependent. lt is therefore of in-

terest to study the common case where the commanded set point yd is a ramp

which corresponds to the case where the desired. path is a straight-line with a

nonzero heading 'Fd . In this case,

�0!yd ~ at'

where a is a constant. To establish the behavior of the output error of this

controller when subjected to eq. �0!, the closed-loop equations can be rear-

ranged so that yd appears as an input and then the steady-state error to a

ramp input can be established.

We noted earlier that Holley and Sryson4 omitted the last term in their develop-

ment of this multivariable integral controller. Without this term, a startup

of the system in an equilibrium position at qo will produce a transient away

from the equilibrium such that v will, generate a value which will produce the

same effect as the final term< i.e.,
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The problem of interest here is stochastic with random measurement noise

v and process disturbances w' . To simplify this section, however, we will

treat only the deterministic problem v ~ w' ~ 0 . This greatly simplifies

the evaluation of the error and reveals the essential character of this type
of controller. For the deterministic case without a constant disturbance, we
have,

x ~ Fx + Gu

v = Tx - yd �1!

Tx

with the control law,

u ~ C~x � C4yd � C4K  Lx + v!

when rlo is taken as zero. Substituting this control into eg. �1! yields,

x ~  F + GCx - CG4K L!x � GC4Kyv - GC4yd

v~ Tx yd

or,

 F + GCx - GC4KyL!  -GC4Ky!
dt v T 0

x GC4
V + yd �2!

where the prime for nondimensional time is omitted here. If we now define

an augmented state variable g = [x, v] and let T' ~ [0 0, Og 1, Og 0]
we have the system,

A + Byd

�3!y T' 

~here A and B are defined by comparison with eq. �2! Equation �3! is a

single-input, single-output system for which the transfer function can be ob-

tained.

If we let Y s! and Yd s! be the Laplace transforms of y t! and

yd t! , respectively, eq. �3! can be expressed as/

Y s!  T'  sI6 A! -IB! Yd s! H s! Yd s! �4!
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where I6 is the 6x6 identity matrix. The transfer function H s! can be

further expressed as,

gp y  !is y y g sm

H s! ap + ass + . ~ ~ + an �5!

The steady-state error e t! due to a ramp input yd at can be defined as,

Yd t!-Y t!
e t! lim

t~ a

or/

Yd  t! -Yss  t!
e t!

a
�6!

~p ap~i - a1 !p
yss t! at + a /

ap ap

so that the steady-state error becomes,

Sp apB> - aqBp
e t! ~ � - � ! t

ap ap
�7!

Thus, if ap 0 50 , the steady-state error to the ramp input is unbounded. If

ap 80 4 0 / the steady-state error reduces to the bounded result,

e t!
ap

�8!

Using eq �4!, the transfer function H s! can be evaluated. This yields

the following results for the first two coefficients in the denominator and

numerator, respectively:

�9!ap ~ Tr f33f25 f23i35!a56

T««33f25 f23f35!a54 +  f32f2S f22f35 f25!a56!

Sp Tr f33f25 f23f35!a56

8i C4 f33f25 23f35! + r<f32f25 22 35 25!a56

 80!

 82!

Chen " shows that the steady-state response of a system with the transfer func-
tion eq. �5! to a ramp input is given by,
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where a54 and a56 are the elements of matrix A in eq. �3>~ i,e.,

C4-C!Ky
a54- Tr  83!

C4Kv
aSe -- Tr  84!

Note that ao So 0 0 so the steady-state error to the ramp input is bounded.

Substituting equations �9!,  80!,  82!,  83!, and  84! into eq. �8! yieldsg

Cq
e t!

C4
 85!

This simple result is extremely important. This indicates that even though the

multivariable integral controller has a steady-state error with a ramp commanded

set point, this error is bounded and known in advance. The controller can,

therefore, be programmed to compensate for this error by simply changing the

point at which a turn is initiated. Notice also that a control lav which

minimizes Cg , the feedback gain on the heading, vill have a minimum steady-

state error. The error can be eliminated with C~ 0



4. Controller Desi and Evaluation

4. 1 Controller Desi

The characteristics of the 290 m tanker Tokyo harv are given in Tables 1

and 2. The only undefined parameter is the rudder time constant Tr which we

have taken as 10 seconds. In the nondimensional form used here this becomes,

Tr ~ 0 ~ 21287  86!

at Fn ~ 0. 116 or 12 knots full-scale. The first step in the design process

is the calculation of the state feedback gain matrix Cx and the state estima-

tion Kalman filter gain matrix K . These can be taken as the optimal steady-

state solutions to the stochastic I inear Quadratic Gaussian  LQG! problem,

x Fx + Gu + I'w

 87!
z=Hx+ v

where w and v are vector white noise processes with power spectral density

matrices Q and R , respectively. The design cost functional is defined as

the expected value of the integral,

tf

Z E[-  x Ax + u Bu!dt] p

to

 88!

where A and B are now weighting matrices which can be initially established

by the designer to reflect the relative acceptability of errors in the various

states and the use of the various controls.

All four matrices Q , R , A , and 8 are diagonal with some nonzero

elements. We have previously ~3 defined these matrices for the design of other

optimal, stochastic controllers for the Tokyo Naru and use the same values
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In this section, we design a multivariable integral path controller for

the Tokyo PIaru using the characteristics defined in Section 2. The performance

of this controller is then evaluated through a series of digital simulations.

As noted in Section 2, the tanker Tokyo Maru is used because of the availability

of data and to allow a more direct comparison of the performance of this con-

troller with that of alternative concepts studied earlier.
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here. Detailed discussion of the choice of these quantities can be found in

the earlier work so only brief comments will be included here. The power spec-

tral density for the process disturbance Q is based upon the passing ship

disturbance shown in Fig. 2. We calculated the root mean square values of N'

and Y' between t' ~ -2 and t' ~ 1.4 and using an assumed first-order-pro-

cess correlation time of one ship length for each disturbance established the

diagonal terms,

q11 ~ 1. 548 x 10-8

8.970 x 10 8  89!

The diagonal terms of the measurement noise power spectral density matrix R

are given in the fifth column of Table 3. The nonzero diagonal terms of the

A and B matrices were taken as,

a44  qo! ~ 772.5

a55 �o! 131 ~ 3 g

b» = �co! = '3' ~ 3

 90!

based on a dimensional use of 5 of rudder when the lateral offset error be"

comes 10.43 m  slightly less than one-quarter beam!.

The solution to this optimal, stochastic control problem requires the
closed-form solution of two matrix Riccati equations2 which can be obtained

from Potter's algorithm using eigenvector decomposition. ~ This technique
was developed into a practical design tool by Bryson and Hall2 in their OPTSYS

computer program. The Michigan Terminal System  NTS! version of the OPTSYS

program has been used here to produce the state feedback gains Cx and the
Kalman filter gains K� listed in Table 4. This design was developed for the

characteristics of the Toyko harv at the water depth to ship draft ratio H/T

used, the best overall performance is obtained if the controller is designed
for the ship's least course stable water depth.

1.89, which is the least course stable depth for this ship. We have previous-
ly shown that if a nonadaptive optimal, stochastic path controller is to be
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Table 4 ~ Optimal Gains for Tokyo Maru at H/T 1.89 and Fn ~ Oi 116

The closed-loop eigenvalues for the 'tokyo Maru at H/T = 1.89 when control-

led by the optimal, stochastic controller given in Table 4 are as follows:

= -0 ' 52137 + 0 ' 87033i

X3 = -6o64361

X4 ~ -0.97623

-2 ' 32090

Recall from Section 3 that the gain K can be chosen by pole placement with

respect to the eigenvalues of the closed-loop system  F + GCz! . Here, we

place K� at, the eigenvalue furthest to the left in the complex planes i.e.,

K -6i64361 o  91!

This will cause the estimate of yw  through v! to converge rapidly compared

to the time response of the system. The output integral error gain Kv was

taken as the simple form,

K ~ [0, 0, 1]  92!

 93!Cy ~ C4 ~ 2 ' 4252 ~

Equation �3! then gives the gain C� as,

 94!C = -C4K = 16 ~ 1121 ~

Finally, the steady-state error of the system to a ramp commanded set point

can be evaluated numerically using eq.  85! and Table 4; i.e.,

as developed in Section 3.2. The value for the gain C can be obtained from

eq. �2! and Table 4] i.e.,
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C1 5 ~ 5421
eee - � - 2.2BB

C4 2 ' 4252
 95!

This completes the design of the multivariable integral path controller for

the Tokyo Maru. The performance of this design is evaluated in a series of

digital simulations which follow,

4.2 verifioetioo of Need for C2X n Tore

We noted in Sections 3.1 and 3.2 that the development of the multivariable

integral controller presented by Holley and Bryson" omitted the last term in

the control law derived here. We derived,

* A A
u = C~x � C4qd C4K  Lx + v! + C1K no �8 !

for the special case where the ship begins controlled operation in equilibrium

on a straight path offset qo from the  -axis. The simulations described in

this section were performed to show the general performance of the controller

and to verify the need for the final term in u . We noted above that without

this term, the ship would undergo an undesirable startup transient which could

be prevented if the initial state were known.

In both these simulations, the Tokyo PIaru controlled by the multivariable

integral controller designed in Section 4.1 is operating in a water depth H/T

2.50. Thus, the ship is not operating in the water depth for which the con-

troller was design and the simulations show the robustness of the design to

errors in the knowledge of the dynamics of the system. We use an incorrect

water depth here only as a mechanism to introduce a rational set of errors in

the system dynamics. The errors in the system model could actually be due to

any cause. At the water depth H/T ~ 2.50 the ship is still course unstable;

the change in syst: em coefficients between the design depth H/T 1 ' 89 and H/T

2.50 can be seen in Table 2. The desired path is a straight line offset one-

half beam yd = no nd 0.0819 from the g-axis. The ship begins in equi-

librium for this condition; i.e.,

x O! = [Of Of Of 0 ~ 0819f 0]T ~

There is no initial disturbance but the ship is sub!ected to the design passing

ship disturbance defined in Fig. 2 with the ships beam-to-beam at t' ~ 7

The measurements are contaminated with the measurement noise defined in Table 3

throughout the simulations.
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Startup without the Cqgrlo Term. The Tokyo Haru was simulated as de-

scribed above using the control Iaw eq. �8! but without the C~QTlo iinal
term. The results of this simulation are illustrated by Figures 5 and 6. With-

out the final term the commanded rudder angle u 6c at time t 0+ was

3.016 rad. The actual rudder angle was driven to a maximum of 0 ' 664 radar which

would exceed full rudder on ocean going ships and certainly exceed the validity

of the linear modeling upon which the design is based. The resulting commanded

and actual ship paths are shown in Fig. 5 ~  Note that the plotter routine has

rounded the labels on the vertical scale> the line spacing is 0.008.! The

startup transient caused by the lack of the CqK qo term in the control law

causes the ship to deviate 0.076 or 22 m from the commanded course before re-

turning to the commanded course. This transient is needed for the variable v

to develop a value, eq. �9!, which will compensate for the truncation of the

control law. The influence of the passing ship disturbance on the path is lost

in the final part of this transient. The rudder history during this simulation

is shown in Fig. 6 ~ The rudder activity due to the passing ship is evident at

t ~ 7 ~ The rudder activity due to the measurement noise is about +1 after

the ship returns to the commanded course.

TLAT %% ~ t4% 'RKR 'le% %JO
TIDE

Figure 5 ~ Canmanded and Actual Ship Paths in Nonzero Set Point Startup with

l'ncomplete Control Law
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Figure 6. Rudder Angle in Honzero Set Point Rtartup with Incomplete

Control Law

Startup with Complete Control Law. The Tokyo Harv was simulated as de-

secribed above using the complete control law eq. �8! to show the effect of

the final term. The results of this simulation are illustrated by Figures 7

and 8i The commanded and actual ship paths are shown in Fig 7. The ship be-

gins in equilibrium on the required path and remains very close to the path.

The maximum deviation occurs at about t' 8 due to the passing ship distur-

bance. This deviation is less than 1 m. Zn comparing Figi 7 with Fig. 5 note

that the scale of Fig. 7 is expanded 20 times compared with that on Fig. 5.

The integral controller provides effective control with sero mean disturbances

such as the passing ship. This performance is at. H/T ~ 2,50 and. thus with in

correct knowledge of the dynamics of the ship. The final term in the control

law correctly handles the effect of the nonzero initial set point. The rudder

history during this simulation is shown in Fig. 8. The maximum rudder angle

is about 7.5 in response to the passing ship. The rudder activity level in

response to the measurement noise is again about + 1 as would be expected.
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Figure 7 ~ Conumnded and Actual Ship Paths in Nonzero Set Point Startup with

Caraplete Control Law

12 00 I0.00 20.IN 20.IN 20,IN 222N %.00
2 I22E

Figure 8. Rudder Angle in Monzero Set Point Startup with Coraplete Control Law
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4.3 Performance with a Bias Disturbances

To evaluate the performance of the multivariable integral controller with

a bias or nonzero mean disturbance, the Tokyo Haru was simulated under the

control of the controller designed in Section 4. 1 while operating in deep H/T

water. The controller was designed for H/T 1.89 so again the ship is

operating with errors in the knowledge of the ship dynamics. The change in

ship characteristics between H/T 1.89 and the stable depth H/T = ~ can be

seen in Table 2. The simulation begins with the ship in a no lateral current

equilibrium condition on the commanded straight path at rid = 0 , The ship is

subjected to the "design lateral current" disturbance shown in Fig. 3. This

disturbance is constant for the first 15 ship lengths and then reduces linear-

ly to half this value by 20 ship lengths. The disturbance then remains con-

stant again after 20 ship lengths. The initial magnitude is established to be

a one knot lateral current when the ship is operating in a water depth H/T

1.89. The disturbance does not represent a true lateral current disturbance

at any other water depth. When the simulation begins, the ship and controller

are in effect subjected to a step change in yawing moment and lateral force.

This simulation, therefore, represents a severe startup test for the controller.

The results of this simulation are illustrated by Figures 9 and 10.

Figure 9 shows the commanded  qd ~ 0! and actual ship paths. The maximum

deviation due to the step change in disturbance is about 60.9 m or 1.3 beams.

The controller then returns the ship to the commanded path. The maximum devia-

tion due to the ramp change in disturbance beginning at t' ~ 15 is about

17.4 m or less than 0.4 beam. The controller returns the ship to the commanded

path after the disturbance has stabilized. The rudder activity associated with

this maneuver is shown in Fig. 10. The maximum rudder angle in the startup

transient is about 33o which stretches the validity of the linear model but

this step change in disturbance is a design test which is unrealistically

severe. The equilibx'ium, mean rudder angles are about 6 ~ 0. 131 prior to

t' 15 and 5 0.0655 after t" 20 . lf the simulation had been conducted

at H/T = 1.89 so that the disturbance would correspond to a true lateral cur-

rent, these equilibrium, mean rudder angles would then have been zero and the

equilibrium, mean state would have been 'P 8 , r 0 . The controller pro-

vides effective control when the ship is subjected to constant disturbances even

when operating with ex'rors in the knowledge of the ship dynamics.
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Figure 9. Conmandel and Actual Ship Paths with Design Lateral Current-

Design for H/T ls89 Operating at H/T

S.N SJS 0.00 l2M I0.NI 2000 20ISI 20.N 32 N N.N
TIME

Figure 10, Rudder Angle with Design Lateral Current-

Design for H/T ~ 1.89 Operating at H/T ~ 0N
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Zn our previous work, the best performance for the simulation shown in

Figures 9 and. 10 was achieved with a controller which used brownian motion pro-

cesses to model the unknown yawing moment and lateral force disturbances. This

design was restricted to straight path qd = 0 operation. Comparison of

Figures 18 and 19 af reference 2 with Figures 9 and 10, respectively, show com-

parable responses with the multivariable integral controller described here

having somewhat superior performance. The maximum deviation at the etartup are

60.9 m and 63.5 m and the maximum deviation due to the ramp change in distur-

bance are 17.4 m and 18.5 m for the multivariable integral cantroller and

brownian motion disturbance model controller, respectively. This improvement

in performance is achieved without any attempt at this point to optimize the

transient response of the multivariable integral controller through the selec-

tion of k3 4 1 in eq. �8!. This controller shows considerable promise and

greater general capability than the brownian motion disturbance model controller'

studied earlier

To ensure that there is not an unacceptable change in the performance of

the multivariable integral controller when sub!ected ta a bias disturbance if

the commanded set point is nonzero, the simulatian described in Section 4.2 was

repeated using a constant "lateral current" disturbance at a value carresponding

ta 1 knot at H/T 1 ' 89. As in Section 4 ' 2, the ship was operating in a ~ater

depth H/T ~ 2.50> the complete control law eq. �8! was utilized. The commanded

set point is a half beam offset> od 0.0819 . The constant disturbance is

applied in a step at the start of the simulationr i.e. the initial state and

cantr'ol are for the no distur'bance condition. The results of this simulation

are illustrated in Figures 11 and 12. Figure 11 shows the commanded and actual

ship paths' The maximum deviation fram the commanded path is about 42.9 m or

about 0.9 beam soon after the startup. The rudder angle history for this simu-

lation is shown in Fig. 12. The equilibrium, mean rudder angle in Fig. 12 is

nonzero because again this design disturbance is not a true lateral current at

the simulation water depth of H/T ~ 2 ' 50. The controller provides effective

control with no noticeable deterioration of performance with a nonzera commanded

set point.
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Figure 1' Commanded and Actual Ship Paths in Nonhero Set Point Htartup

with Step Disturbance

12.II 12.00 22,22 24 22 22,20 2202 2L00
TIVE

Figure 12. Rudder Angle in Nonsero Set Point Startup with Step Disturbance
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4.4 Lane Chan in Maneuvers

A common maneuver in restricted waters is the change from one straight

path to a second, parallel straight path. This can be extended to a second

change back to the original path as would occur in a passing or overtaking

maneuver k series of lane changing maneuvers wexe simulated with various

disturbances to evaluate the performance of the multivariable integral ship
path controller.

Lane Change with Passive 8'hip. In this simulation, the Tokyo Haru under

the control of the multivariable integral controller designed in Section 4. 1

was simulated to be operating at a water depth H/T ~ 1.30. The controller was

designed for H/T 1.89 so this simulation is with "incorrect" knowledge of

the ship dynamics. The change in ship chax'acteristics from H/T = 1.89 to H/T

1.30 can be seen in Table 2p the ship is very couxse stable at H/T 1.30.

The commanded ship path is qd ~ 0 for the first 10 ship lengths, varies

linearly to 4 beams, rid = .655 , at 20 ship lengths, and then remains constant

at nd .655 after t' 20 . The central portion of the maneuver represents

a heading change of only 3.75c. More extreme heading changes will be illustra-

ted below. The simulation was initiated with the ship in equilibrium on the

commanded path. The ship was subjected to the passing ship disturbance shown

in Fig. 2 with the ships beam-to-beam at t' ~ 7

Yd at'

the steady-state error will be given by,

C1

C4
ess =

The results of this simulation are illustrated by Figures 13, 14, and 15.

The commanded and actual ship paths are shown in Pig, 13. A small perturbation

due to the passing ship is evident at about t' 8 > this only a little over

1 m. The ship turns to the transition course smoothly and completes the lane

change with an overshoot of less than 2 m. The dominant feature of the response

is the continuous error in the path during the transition phase. This is the

steady-state error to a ramp commanded set point property of the controller

studied in Section 3.3. The actual path lags the commanded path by about . 15

or 43.5 m. These results compare exactly with the analytical results from

Section 3.3. In Section 3 ' 3, we found that for a ramp commanded offset,
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For the design developed in Section 4 1, the steady-state error was found to

be,

ess 2.285

For the simulation shown in Fig. 13, the slope a is 4 beams in 10 ship

lengths or a ~ 0.06552 . Using the definition of the steady-state error,

eq. �6!, the steady offset error will be,

yd - y - 2.285a - 0.1497  96!

for this particular maneuver. These results correspond almost exactly with

the simulation results. With this knowledge available in advance, the maneuver

could simply be initiated 2.285 ship lengths "earlier" than shown in Pig. 13

and thus the steady-error in this maneuver can be eliminated as a practical

concern. This can be illustrated further by Fig. 14 which shows the path error

during the lane change shown in Fig. 13 ' The error during the transition can

be seen to be about 0 ~ 15 ~ Shown on Fig, 1 4 as a dashed l ine is the revi sed

zero point for the path error if the turn were actually programmed to be initi-

ated 2.285 ship lengths earlier than shown in Fig. 13 ' The zero point would

then effectively be 0. 1497 between t' ~ 10 and t" 20 as shown on Pig. 14.

 Actually the whole maneuver ~ould be shifted 2.285 to the left.! There would

be farily large errors as the ship completed the two heading changes smoothly

over three ship lengths after t' ~ 10 and t' ~ 20 ~ The error between

13 and t" 20 during the transition would then be 1.3 m or less.

Recalling that the controller is operating with incorrect knowledge of the

ship dynamics, this is highly effective path control.
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Figure 13. Commanded and Actual Ship Paths in Lane Change with Passing Ship
Disturbance

~ AO SAD IZ.N ISAI BA 2~ 20A4 R.M KAQ
TII1E

Figure 14. Path Error in Lane Change with Passing Ship Disturbance
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The rudder activity in the maneuver shown in Fig. 13 is shown in Fig. 15.

The maximum rudder is due to the passing ship disturbance and reaches a magni-

tude of about 8.3c just after the ships are beam-to-beam at t' 7 ~ The

rudder angles to initiate the two heading changes reach magnitudes of about

5.2c and 4.0' The general level due to the measurement noise is within +1.5

IIINI 20 BI 24.IIII 2SAD 32,II ÃA4
TItlE

Figure 15. Rudder Angle i,n Lane Change with passing Ship Disturbance

Lane Change with Bias Disturbances. This simulation is similar to that

just described except that �! the ship is subjected to the design lateral

current disturbance shown in Fig. 3, �! the ship is operating in a water depth

H/T 2.50, and �! the lane change is for a 0.5 ship length offset in 10 ship

lengths. In this situation, the commanded set point slope a = 0.0500 during

the transi.tion and the resulting offset error corresponding to eq.  96! is

0. 1143 The results of this simulation are i.llustrated in Figures 16 and 17.

The commanded and actual ship paths are shown in Fi,g. 16. The corresponding

rudder activity is shown in Fig. 17.
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Figure 16, Conumnded and Actual Ship Paths in Lane Change with Design

Lateral Current
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Figure 17. Rudder Angle in Lane Change with Design Lateral Current
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As in the simulation with the design lateral current illustrated in Figures

9 and 10, the ship is subjected to a step change in yawing moment and lateral

force disturbance at the start of the simulation. The ship path shown in Fig. 16

therefore, includes a transient from the commanded path which reaches a maximum

offset of about 43.5 m or 0.9 beam at about t" 3 . The ship enters the

transition effectively and the path lags the commanded path by about 2 ' 285 ship

lengths with a path error of about 0. 1143 during the constant disturbance prior

to t' = 15 . The period of time-varying disturbance between t' ~ 15 and t'

= 20 , however, appears to introduce an additional time lag of about 0 ' 7 ship

lengths and introduce additional path error. Lf the turn had been programmed to

be initiated 2.285 ship lengths earlier to eliminate the steady-state error prior

to t' 15 , the resulting cross-track error at t' ~ 20 would have been about

11.8 m or one-quarter beam.

The additional path error introduced by the time-varying disturbance be-

tween t' = 15 and t' 20 appears in Fig. 16 to be decreasing near the end

of the transition. To ensure that the time-varying disturbance does not intro-

duce a change in the steady-state error to a ramp commanded set point, we re-

peated the simulation shown in Figures 16 and 17 with the second turn at t'

20 eliminated. The resulting commanded and actual ship paths are shown in

Fig. 18' the path error is shown in Fig. 19 ' The time-varying disturbance can

be seen to perturb the ship path but not alter the steady-state error properties.

The maximum cross-track error wouM be only 11.8 m or one quarter beam at t'

= 20.4 if the turn were programmed 2.285 ship lengths early to accommodate

the known steady-state errors The controller is, therefore, effective with

both bias disturbances and large time-varying disturbances as might be expected

from banks or current changes.
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Figure 18. Commanded and Actual Ship Paths in Single Turn with Design

Lateral Current
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Figure 19. Path Error in Single Turn with Design Lateral Current
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Passing arith a Bias Disturbance. As a final illustration of the effective-

ness of the multivariable integral controller with a bias disturbance, the

Tokyo Haru under the control of the design developed in Section 4.1 was simu-

lated to pass another ship using two 0.5 ship length lateral transfers requir-

ing 10 ship lengths each' The transfers were commanded beginning at t' ~ 5

and t' ~ 25 . This simulation wae conducted in a water depth H/T ~ 2.50.

The ship was sub!ected to yawing moment and lateral force step disturbances

with magnitudes corresponding to a 1 knot lateral current in H/T ~ 1.89> i.e.,

Fig. 3 with t' C 15 . The commanded and actual ship paths are shown in Fig, 20.

Again the performance is very good. The time lag and steady-error properties

can be seen to be independent of turn direction and bias disturbance magnitude.

Each of the four turns could be initiated 2.258 ship lengths early to eliminate

the steady-error during the two transition periods. The overshoot at t' = 19

and t' ~ 39 is about 3 m.

SAN l2.N 1MI S.M 24AO HAMI $2AN SMI
Titian

Figure 20. Commanded and Actual Ship Paths in Passing with Sias Disturbance

4.5 St. Mar s River Turns

The purpose of this simulation was to test the effectiveness of the multi-

variable integral controller with larger magnitude turns typical of a general

transit in restricted waters. Based upon a discussion with the Captain of one
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of the 304.8 m �000 ft! Great Lakes ore carriers, the series of three turns

in the St. Marys River between Sand Xsland and Moon Xsland in the West Seebish

Channel was selected as the prototype for this simulation. These turns vere

identified as some of the most difficult in the Great Lakes system for the large

bulk carriers. This path is the downbound lane and is shown in Fig. 21. The

second leg of this path is the Rock Cut which has vertical cut stone ~alls.

The channel at this point is roughly three beams wide for the largest ships in

the system. For the purposes of the simulation reported here, only the path

was utilized from the prototype. The simulation maneuver is defined in Table 5.

Table 5. Simulation Maneuver Based Upon St. Marys River

For this simulation, we continued to utilize the Tokyo Haru under the con-

trol of the controller developed in Section 4. 1. The simulation was performed

at a constant depth of H/T 1.89. Thus, the operating and controller design

depths were the same. Bank effects and current were not included in this par-

ticular simulation. The passing ship disturbance shovn in Fig. 2 with the ship

beam-to-beam at t' 7 was included for test purposes even though the proto-

type is actually a single direction channel. The simulation was started in

equilibrium on the commanded path. The results of this simulation are illu-

strated by Figures 22 and 23. The commanded and actual ship paths are shown

in Fig. 22. Because of the coordinate system defined in Fig. 1, the plot of rl

versus t' appears as a mirror image of the actual path. For clarity of the

results, the turns were not initiated 2.285 ship lengths "early" but this could

have been done to eliminate most of the path error in the final three segments

when the commanded heading is not zero. The analytical path error yd � yss

for the second, third and fourth segments are 1.722, .362, and 2.629, respec-

tively, when the turns are not. programmed to be initiated 2.285 ship lengths

early.
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Sample results from the simulation are shown in Table 6. The resulting

path error with the 2.285 shift in the turn commands is shown in this Table.

Zn general, the performance is excellent. The larger error at t' ~ 50 is

still only . 15 beam for this ship. This error seems to result from the presence

of the transient initiated at the start of the segment since the error at t'

= 47, 48, 49, and 50 is +.025, +.004, � .025, -0 25, respectively. Allowing

for the shift of 2 ' 285, the maximum overshoot after the first turn is .094 or

27.3 m. This corresponds to a crosstrack overshoot of 21.8 m or .46 beam. The

maximum overshoot after the second turn is .082 which corresponds to a cross-

track overshoot of 23.5 m or .49 beam. The maximum overshoot after the third

turn is . 121 which corresponds to a crosstrack overshoot of 23.0 m or .48 beam.

The rudder angle in these turns is shown in Fig. 23. The maximum rudder angle

at the start of the first turn is 23.9c; maximum rudder angle at the start of

the third turn is 30.0 . In the next section, we investigate an approach for

reducing both the overshoot and maximum rudder angles

Figure 22. Commanded and Actual Ship Paths in St. Marys River Turns



~50

O.M HLINt 2 ldll 7?,Nl 40,IN 1I.NI 55.IO 5I.M 72.5I
TII1E

Figure 23. Rudder Angle in St. Hiarys River Turns

*printed simulation results have only four significant figures so results are

+ ~ 005

Table 6. Sample Results in St. drys River Turns Simulation

4.6 Cubic Turn Command

Zn order to reduce the path overshoot and reduce the maximum rudder angles,

the commanded turn can be a smooth curve rather than a discrete change of head-
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ing as used in Fig. 22. To investigate the effectiveness of this approach,

the first turn in the St. Marys River turns simulation described in Table 5

with the passing ship disturbance shown in Fig. 2 was repeated using a cubic

turn command. For simulation convenience, however, the 37o turn was made to

starboard. The commanded path was as follows:

t' C 10yd 0

yd = ~ 0086704  t' 10! + ~ 0056385 t 10! i 10 C t C 15 17

Yd = ~ 75355  t -13. 38! 15 ~ 17 C t'

This cubic transition path reaches the desired 37' path beginning at t' = 13.38

at t' = 15.17 with the correct 37 heading. The corrrmanded and actual ship

paths for this turn are shown in Fig. 24. As in Fig. 22, the turn is not pro-

grammed to be initiated 2 ' 258 ship lengths early in order to eliminate the

steady-state error. Analysis of the simulation results allowing for the 2 ' 258

shift in the actual path shows that the response has a maximum overshoot of

about .0511 at t" 18.3 . This overshoot can be seen in Fig. 25 which shows

the path error for the turn shown in Fig. 24. with the 2.258 ship length shift,

the effective path error after the turn is completed would be with respect to

the steady-state error value of 1.722. Dimensionally this overshoot is 14.8 m

compared with the 27.3 m overshoot in the first turn of Fig. 22r the crosstrack

overshoot is 11.8 m or one-quarter beam compared with 21.8 m in Fig. 22. The

cubic turn command, therefore, provides a significant reduction in path over-

shoot. The rudder activity in the turn shown in Fig. 24 is shown in Fig. 26.

The maximum rudder angle magnitude in the initation of the turn is 5.6 t the

maximum rudder angle used in checking the turn is 8.9c. These values compare

favorably with the 23.9 and 14.7 , respectively, shown in Fig. 23 for the first

turn. The cubic turn command, therefore, provides a significant reduction in

the rudder angle magnitudes used in turns made under the control of the multi"

variable integral controller. Controller implementation of this control law

could include both the 2.258 ship length shift and cubic turn commands. The

resulting controller shows considerable promise.
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Figure 24 ' Commanded and Actual Ship Paths with 37 Cubic Turn Command
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Figure 2S. Path Error with 37c Cubic Turn Command
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Figure 26 ' Rudder Angle with 37 Cubic Turn Command



5, Turnin b Coordinate Rotations

Zn the px'evious sectian, a cubic turn command was utilized to reduce rudder

usage and ovexshoot in turns under the control of the multivariable integral

controller dex'ived in Section 3. In this section, we study an alternative

approach in which the turn is achieved by a series of coordinate xatations with-

in the control computer without a specific turn command. The necessary coordi-
nate transformations are developed and then the effectiveness of this approach
is illustrated by digital simulation.

5.1 Derivation

In the results presented in Section 4, turns were at discrete locations

and were initiated as discxete changes in heading< i.e., ramps in commanded off-

set, or were initiated using cubic transitions in the commanded offset followed

by a ramp cammanded offset. This approach included a steady-state error ta the

ramp commanded offset which will occur with any constant nonzero heading. Know-

ing the steady-state error in advance we noted that this could be taken into

account by simply initiating the turns 2.258 ship lengths early fox the specific

design studied. This approach would be practical far a series of discrete turns

with intermediate periods of constant heading as in the St. Marys River turns

simulation. 1n more complex situations involving more closely spaced turns ar

perhaps continuous turning, this would become difficult to manage. An alterna-

tive approach would be to rotate the coordinate system used by the controller

so that it is aligned with the desired heading. This could be implemented in

small, discrete steps consistent with the cycle time af the cantrol computer.

Since the final candition will always have the rid 0 with respect to the in-
ternal caordinate system, there will be no steady-state error.

In this approach, we will be dealing with two coordinate systems. The

global system  X,Y! is fixed to the earth. It is utilized to keep track af

the position of the ship with x'espect to the navigational charts. The local

system   ,rl! is generally aligned with the channel with the g-axis along

the centerline or desired track. The control law will be based on the local

system since the state vector will be computed with respect to the local system.

Rotation of local Coordinates. The geometry associated with a discrete

ratation of the local coordinate system at a time ti is shown in Fig. 27.

Point G is the center of gravity of the ship. The desired path can be construc-
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ted as a series of straight segments separated by the rotation points Ai ~ At
the rotation time ti , the local coordinate system  gi, vli! is at an angle

with respect to the global X-direction. The local lateral offset is

HiG in Fight 27. At ti , the local coordinate system is rotated through an

angle ai to a new local coordinate system  pi+~, qi+~! which is at an angle
with respect to the global X-direction. The new local lateral offset is

1 i+ q Hi~ 'IG ~ The angle s 8 i and 8 i+ ~ locate the rotation point Ai with

respect to the ship using the gi- and gi~q-axes, respectively. A reasonable

logic for establishing the rotation time ti would be when 6i = 28i~q for
the particular geometry shown in Fig, 27, Suitable equivalents could be devel-

oped for the other combinations of ai and ni

command

Figure 27. Rotation of Local Coordi.nate System

If we define GHi positive in the direction of positive ni and define
di ~ HiAi and di+~ ~ Hi+~Ai positive in the direction of positive

respectively, we have,

ei = tan-'  97!

di+ l
8i~g = tan

~i+>
 98!

and g
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ui - ei - ei+1 ~  99!

The rotation time ti might then be taken when eii1 ei for the geometry

shown in Fig. 27. After the rotation, the new lateral offset is,

rli~1 ~ -GAi cos 8i+1

- � ~n,' + a, ~s e, - a, ! �00!

The new heading angle pi+1 vill be related to the prerotation heading angle

4i+1 - 4i + <i ~   101!

[Wit rt Se lir T

ti
�02!

M+1  dpi+1 r   1i+1 T

ti
�03!

with the nev qi~1 and pi~1 given by eq. �00! and eq. �01!, respectively.

At ti , the system model is switched from the system i g i.e.,

xi F~x+ Gu+ Fw

zi ~ Hxi +

to the system i+1 ~ i.e4 g

xi+1 ~ F~x+1 + Gu + I'v

~2+1 ~ Hxiy1 + v

Txjy1 ~

Since the state vector ~x  ti! contains all past history of the system prior

to ti , ~x +1 ti! from eq.   103! can be used as the initial condition for

system i+1 . The validity of the switching process is guaranteed by the Semi-

Group axiom of system theory. Finally, the error integral state v in the

integral controller should continue undisturbed> i.e.,

The other states vill be unchanged so the state vectors before, ~x , and after,

xi+1 , the rotation at ti vill be given by,
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ti ti+1

v 't! ~ ~ ~ ~ +  ni - nd !dt' +i  nii1 - nd !dt' + ".
i+1

ti

Global Coordinate Transformation. with the rotation of the local coordi-

nate system it is necessary to have a transformation from the local to global

coordinates to be able to keep track of the position of the vessel. The re-

quired geometry is illustrated in Fig. 28. The ship center of gravity G and

projection H on the pi+1-axis are shown for the rotation time ti and a

later time t ~ If we assume that the ship path is never at a Large heading

with respect. to  i+1 and that speed is constant as in the initial develop-

ment of the linear model, the nondimensional time t will have units of ship

commanded path

Figure 28. Global Coordinate Transformation

lengths along the giq1 axis. At the time of the rotation ti , the distance

di+1 from Hiq1 to Ai is established. Thus, the coordinates of Hi+1 in

the global system  Xi,Yi! can be established. The position of H t! is then

given by,

XH t! ~  t � ti!cos !i+1 + Xi

  104!
YH t! =  t - ti! sin !i+1 + Yi ~

The position of the ship in the global coordinates is then given by,
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XG t! - X� t! + ni~1sinfi+1

�05!
G t> = '4«! - <i+lcas4i+1 ~

In a treatment using the full nonlinear equations of motion the  -coordinate

equation could be utilized and speed changes could be accounted for. The treat-

ment here is restricted to the linear, constant speed model. The prime has

been dropped from the nondimensianal time in the above development.

5.2 Simulation Results

In this example, the Tokyo Haru under the control of the multivariable in-

tegral controller designed in Sectian 4, 1 is simulated through a 37 turn which

is initiated using the coordinate ratation approach. The ship is operating at

the controller design depth of 8/T 1.89 . The commanded set point yd = nd

0 throughout since the turn is created by the coordinate rotations. A single

rotation of 37C would produce unrealistiCally large rudder commandS. The turn

is therefare created in a series of 40 equal rotations at each 0. 1 ship length.

The turn begins at t' 1' 38 and is thus completed at t' 15.38 ~ The

passing Ship disturbanCe Shown in Fig. 2 with the Shipe beam-to-beam at t' ~ 7

is included in thiS Simulation. The resultS are illuetrated by Figures 29, 30,

and 31. Figure 29 sho~s the global path for the turn. The 370 heading final

track begins at Y ~ 0 at X ~ 13 ' 38 as in the first turn of the St. Narys

River turns simulation. The local commanded and actual ship paths are shown in

Fig. 30. In this approach, the cammanded path is always qd 0 so the local

path represents the path error. There is no steady-state error in this ap-

proach. The maximum overshoot occurs at t' = 17.5 with an overshoot of . 1526

ar 44.3 m. This is a crasstrack overshoot of 35.3 m or .74 beam compared with

11.8 m for the cubic transition turn shown in Fig. 24 and 21.8 m for the discrete

37 first turn shown in Fig. 22. The rudder angle in the turn is shown in Fig.

31. Using coordinate rotatians, the rudder magnitude reaches about 28 at twa

points in the turn. This compares uniavorably with the maximum rudder angle mag-

nitude of 8i9c shown in Fig. 26 for the cubic transition turn and 23.9O shown for

the first turn in Fig. 23. The coordinate rotation approach does not offer im-

proved turning performance. It could be used periodically, however, to realign

the local coordinate system and eliminate the steady-state error.
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Figure 29. Global Path in 37o Turn by Coordinate Rotations

a I LU 20 II.NI 0.00 0.IN Il.dd I0.00 20.00 24 M 2000 2200 20.00
T! I1E

Figure 30. Local Path in 370 Turn. by Coordinate Rotations
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Figure 31 ~ Rudder Angle in 370 Turn by Coordinate Rotations



6i Conclusions

The following are the principal conclusions based upon this work:

The multivariable generalization of the integral controller presented

here follows that of Holley and Bryson4 except that we have obtained an addi-

tional term in the control law which results from a constant of integration.

This additional term in the control law allows the controller to accommodate

nonzero initial setpoint commands without a highly undesirable staxtup transient.

In the specialization of this contx'oiler to ship path control, we have

studied at this time only the special case where the integral error variable

Kalman filter gain is K ~ [0, 0, 1] . The design of this gain contains the

free variable k3 which can be selected to optimize the transient response of

the controller with the othex' elements of K [k~, k2, k3! then obtained

using eq. �8!. We hope to investigate the effect of optimizing k3 on the
performance of this controller in the near future.

The multivariable integral controller has the property of zero steady-

state error with a constant commanded set point when sub!ected to disturbances

and measurement noise. In ship path control, a common situation is a nonzero

heading straight path which corresponds to a ramp set point command. In this

case, the multivariable integral controller has a nonzero steady"state error

which can be interpreted as a time shift in the turn response. We derive a

simple analytical expression for this error, eq.  8S!, which allows its calcu-

lation in advance. The effect of this error can then be eliminated by simply

initiating the turn a fixed time earlier than would normally be expected.

In simulation results presented in Section 4, we show the value of the

additional term in the control law in eliminating unwanted startup transients if

the initial commanded set point is not zero. With the complete control law, per-

formance with a constant set point is excellent even when the ship is subjected

to large time-varying disturbances and when the design is based upon incorrect

knowledge of the characteristics of the ship. The nonoptimized controller stud-

ied. here shows superior performance to the path controllers we have developed

earlier using brownian motion disturbance models.

The multivariable controller provides effective control in lane changing

and passing maneuvers provided the time shift needed to offset the steady-state

-61-
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error to a ramp commanded set point is implemented. This performance is not

sensitive to errors in the knowledge of the dynamics of the ship. The control-

ler is effective when subjected to large bias or time-varying disturbances.

The multivariable controller provides effective control in larger mag-

nitude turns between straight path segments as included in the St. Marys River

turns maneuver defined in Table 5. The time shift must be included to offset

the steady-state error to ramp commanded set points when the path heading is

nonzero. Cubic transition set point commands can be introduced to reduce the

overshoot and rudder activity in the turns.

The use of coordinate rotations was introduced as an alternative means

of eliminating the steady"state error to a ramp commanded set point and possib-

ly reducing the overshoot and rudder activity in the turns. The latter objec-

tive was not realized, but this approach could be used periodically to "update"

the local coordinate system in the controller and to accommodate continuous

turning situations.
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